
 Distributed Logical Time

 1 of 7

Distributed Logical Time
by Jason Cohen on February 23, 2019

Time is notoriously difficult to synchronize in distributed
systems. Many algorithms require—or have better char-
acteristics when—any number of independent replicas
achieve a single global time-ordering. In particular, it is
useful to know that if two events are separated by more
than a few seconds in real-time, that they will be correct-
ly ordered, despite replicas having unsynchronized physi-
cal clocks.

However, operating system clocks are undependable and
can even move backward. Furthermore, we don’t want to
rely on a “master” or central server. Replicas should be
able to arbitrarily join or leave a collective without an-
nouncement, operate independently, and communicate
with each other peer-to-peer, in any pattern.

Common methods to solve the problem either involve
custom infrastructure to achieve tight bounds on the be-
havior of operating system clocks (e.g. Google
TrueTime), or some sort of distributed logical clock such
as Vector Clocks. The former is unavailable to most of us,
especially if we want our code to run in browsers or lap-
tops or non-Google data centers. The latter suffers from
unbounded memory requirements and still results in
“conflicts” which are resolved arbitrarily or not at all.

Here we present an algorithm and Golang implementa-
tion that meets the objectives, with no assumptions about
the behavior of operating system clocks, without vector
clocks, and without central coordination.

Objectives & Definitions
It’s useful to establish a few definitions and conventions
before describing how we achieve a solution:

RT—Real Time—theoretical omniscient “actual”
time. Imagine it as arbitrarily-high-precision UTC
time exactly synchronized everywhere. This is not a
quantity that any replica can compute; it is for
algorithmic discussion only.
PT—Physical Time—the time reported by the
operating system. This is the only notion of “time”
that a replica can access.
LT—Logical Time—our implementation of “time,”
with the properties outlined above and precisely
defined below.
XT{expression} means “the type of time XT ,
applied to the replicas or events in the expression.”
For example, PT{ P<Q } means “the Physical Time
on the replica P is less than the Physical Time on
replica Q .”

With this terminology, we can define our assumptions
and our requirements for LT precisely:

1. PT is arbitrary. It can move backwards, it does not
produce unique values, it might update only rarely, it
is never synchronized between two replicas, it can be
ahead of or behind RT by an arbitrary and variable
amount. The only thing we know is that, over a long
duration, it generally increases.

2. LT always increases. Whenever LT is requested, it
will have increased since the previous request
(regardless of PT’s behavior).

3. If B happens after A in real-time, i.e. RT{ B>A } , but
A and B happen on different replicas:

a. Correctly ordered in LT when sufficiently
time-separated in RT. If RT{ B-A } > e , where
e is a small, bounded constant, then LT{ B>A }

We’re obviously in no danger of
arriving at consensus.”

—Warren Buffett

“

https://cloud.google.com/spanner/docs/true-time-external-consistency?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://en.wikipedia.org/wiki/Vector_clock?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Distributed Logical Time

 2 of 7

also.
b. Arbitrary LT order if close together in RT. If

RT{ B-A } < e , then there’s best-effort for
LT{ B>A } , but it could be LT{ B<A } .

c. e is small and bounded. e must be small (e.g.
1-2 seconds), and be a constant, not proportional
to some state or configuration. e is the time
window inside which we accept events that are
incorrectly ordered, so we require this window to
be small.

d. “Happened-before” relation is always
correctly ordered in LT. If A happens, then the
two replicas communicate, then B happens, then
it is always true that LT{ B>A } , even if RT{ B-
A } < e .

4. Skewed PT on one replica doesn’t skew the
behavior of the collective. If one replica’s PT differs
significantly from RT, it should still participate
properly with the collective; for example it shouldn’t
automatically “win” due to the late-skewed PT, or be
unable to write a change due to early-skewed PT.

5. LT uses constant memory. Use a fixed number of
bits to represent LT, regardless of factors like the
number of replicas. (Unlike Vector Clocks.)

6. Decentralized, without “join” or “leave” events.
No masters, no central API. Peers can communicate
in arbitrary patterns. Peers never need to announce
their joining or leaving the collective. There is no list
of peers.

It may sound impossible to achieve the goals of LT given
that RT is inaccessible, PT lacks all the properties we
need, and replicas aren’t synchronized. It’s fun to see
how it can in fact be achieved.

LT inside a single replica

It might seem trivial to create LT within a single replica,
but even that requires an algorithm. Typically the operat-
ing system is used for PT, but that can move backwards
(e.g. with NTP, with leap-seconds, with manual settings),
and is non-unique (e.g. asking for the time in rapid suc-

cession often yields the same value from the operating
system, due to CPUs being faster than the precision of
time), and can drift significantly far away from RT (due
to various causes as in these examples).

PT will generally increase in the long-run, but we have to
“smooth over” the bumps where it is stagnant or decreas-
ing. To do that, we store the “last-seen PT,” and also a
counter, and use the following algorithm (plus a mutex
for concurrent access):

func GetLT() {

if PT_Current > PT_LastSeen {
PT_LastSeen = PT_Current
Counter = 0

} else {

Counter = Counter + 1
}
return {PT_LastSeen, Counter}

}

LT is ordered first by PT_LastSeen and then by
Counter . So, as long as PT increases, we use it, staying
hopefully somewhere near RT (more on this later), but if
PT does not increase, the Counter ensures that LT still
increases.

In the following simulation from our golang implementa-
tion, we can see how LT monotonically increases even
when PT doesn’t:

The use of a counter also means the precision of PT is not
important. Therefore, a performance optimization is to
use a recurring timer to update a thread-safe global vari-
able with PT 1-4 times per second, rather than invoking
the much more expensive and blocking operating system

https://stackoverflow.com/questions/4770635/s3-error-the-difference-between-the-request-time-and-the-current-time-is-too-la?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Distributed Logical Time

 3 of 7

call to retrieve PT every time we compute LT. With this
optimization, we achieved tens of millions of invocations
per second even in a Javascript implementation on a typ-
ical laptop.

“Happened-Before” relation between
replicas
Suppose an event A happens on a replica P, and then P
communicates with another replica Q, sending that
event. Afterwards, an event B happens on Q. We want to
be certain of LT{ B>A } , even though A’s LT was gener-
ated on P and B’s LT was generated on Q. (See diagram
below)

The PT of P and Q will differ, and could differ in either
direction. If PT{ Q>P } , then we’ll get LT{ B>A } natu-
rally, because the PT component of Q is already ahead of
the PT component of P. That’s the easy case.

In the other case that PT{ P>Q } , we have a problem. In
the example below, P’s PT is one minute ahead of Q’s.
After P sends Q event A with LT{ 71.0 } , Q’s LT is still
far behind, which means when event B happens one sec-
ond later, it is LT{ 13.0 } , resulting in the problem
LT{ A>B } even though RT{ A<B } .

Problem: B’s LT isn’t later than A’s LT, because they’re on dif-
ferent servers.

To fix this, we simply set both components of Q’s LT
equal to P’s. Q will know to do this, because when P com-
municates with Q, it transmits its current value of LT. The

following algorithm ensures Q will end up with a strictly-
larger LT:

func UpdateLTFromPeer(LT_Peer) {
// Operate on current LT
LT_Local = GetLT()
// Take the latest LT

if LT_Peer > LT_Local {
LT_Local = LT_Peer

}
// Ensure strictly larger than any previous LT

Counter = Counter + 1
// This is the new local LT
SaveState(LT_Local)

}

A side effect is that Q’s PT_LastSeen will be ahead of its
own PT, but that’s fine because Q will just use its Counter
until its own PT catches up. Meanwhile, PT{ B>A } is
guaranteed, as the diagram now shows:

Solution: Q appropriates P’s LT, because LT{ P>Q }

Further discussion and a proof of correctness can be
found in the paper that invented this method, in which it
is called a Hybrid Logical Clock (HLC).

Using Skew to fix the future
Although the algorithm above satisfies many of the re-
quirements of LT, it violates the requirement that e be
small and bounded.

To see why, let’s extend our example to consider what
happens with subsequent events on P and Q. In particu-
lar, P generates an event C soon after B (in RT), and then

https://stackoverflow.com/questions/4770635/s3-error-the-difference-between-the-request-time-and-the-current-time-is-too-la?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://www.cse.buffalo.edu/tech-reports/2014-04.pdf?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Distributed Logical Time

 4 of 7

Q generates an event D about thirty seconds after that:

Problem: PT clock-skew breaks LT ordering of future events C
and D, even though they differ by 30 seconds in RT

We’ve highlighted the problem: LT{ C>D } , even though
RT{ C<D } . The cause of the problem is displayed in the
diagram: Because Q’s PT is so far behind P’s, Q has to use
its Counter to increment its LT, but meanwhile P is in-
crementing its LT using its PT. In fact, every event on P
during the minute after P communicated with Q will
have an LT greater than every event on Q during the
same interval, regardless of their ordering in RT. This is
the condition described in our original LT goals where
events can be mis-ordered in LT if they happen closer
than a duration e . The trouble is, e is too big (it’s one
minute in this example) and it’s not bounded (it could
just as easily be one hour).

This situation remains even after Q’s PT catches up with
the synchronization event. P’s LTs will always have a larg-
er PT component than Q’s LTs, and thus P’s events (with-
in any one-minute time window) will always look like
they are later than Q’s in LT, regardless of their order in
RT.

One solution is to mandate small PT clock skews, which
in turn mandates that e is small. For example, a basic
NTP service can keep clocks synchronized to within tens
of milliseconds. In this case the effect in our example
would still exist, but only inside a tiny time window of
tens of milliseconds, not a full minute. That would be
acceptable.

However, our implementation does not assume control
over PT. A replica might be a browser or laptop that we
don’t control, or a virtual machine that isn’t running NTP.
So, we need an algorithmic extension that eliminates this
problem of PT clock skew.

The solution is for Q to compute the PT clock skew, and
use that as an offset to its native PT to stay reasonably
up-to-date with P. This cannot be done precisely, because
of the non-measurable and often-variable communication
transmission delay between P and Q, and because PT
isn’t dependable, but it turns out being precise is not
necessary.

When P communicates its LT to Q, Q computes
s = PT{ P-Q } as the “skew.” As the diagram below il-
lustrates, s will always under-estimate the actual clock
skew, because it’s not taking transmission-time d into ac-
count. In our example here, the actual clock-skew is 60 ,
but the computed skew is 59 due to the transmission de-
lay d=1 .

When s is positive, Q saves s . The next time PT is com-
puted, Q uses PT{ Q } + s as physical time. This means
Q’s idea of physical time is now only d behind P. This
nullifies the problem in our example:

Solution: Use an approximation of real clock skew to reduce
the time-window of out-of-order LTs

If s is negative, it is ignored; this ensures that clocks
that are already ahead do not get even further ahead.

 Distributed Logical Time

 5 of 7

Although in practice d is not measurable and fluctuates,
it is always non-zero, and rarely larger than a few sec-
onds. It is proportional to network transmission time, not
proportional to PT clock skew or any other system state
or configuration. Therefore we can say that s always un-
der-estimates skew, and by a bounded amount on the or-
der of the replica’s communications delay (i.e. 1ms inside
a data center, 100ms across a country, or 1000ms across
the world).

Finally, observe from the diagram that the time-window
in which this problem can occur has been reduced to just
1 second, i.e. reduced to d . Indeed, e from our LT goals
is exactly d theoretically, and on the order of d practi-
cally, which we just said was less than a few seconds.
Thus, we have achieved the objective that e be a bound-
ed constant.

What happens when all replicas’ PTs are in fact well-syn-
chronized, e.g. with an error less than d , which is easily
achievable with well-known algorithms like NTP, or mod-
ern phones and laptops that synchronize their clock with
GPS? Then the computed skew will be less than zero. To
see why, consider that
[computed skew] = [real skew] - d , but in this hy-
pothetical, [real skew] might be 50ms whereas d is
typically greater than that. Negative computed skews are
ignored, thus we’ll always have s = 0 .

Although this is not a specific requirement on the behav-
ior of LT, it does satisfy an intuitive desire for skew-cor-
rection to vanish when it isn’t needed.

If a replica’s PT is substantially earlier than RT, it will de-
velop a large forward skew, neutralizing the problem. If a
replica’s PT is substantially later than RT, all other repli-
cas will develop a skew that aligns with it. Therefore, we
achieve the objective that significant skews in either di-
rection don’t adversely affect operation of those replicas
or of others.

Still, a replica with a large PT-RT will create a large
skew value for the whole group, with the legal but unde-
sirable effect that PT + s differs significantly from RT.
When that happens, it’s important that skews don’t con-
tinue to creep up, with each replica edging the others for-
ward. A non-zero value of d helps; in our implementa-
tion we add another 500ms to the effective value of d to
ensure this effect.

Simulations
The following simulations were generated from our
Golang implementation.

Convergent LT, with staggered PT

With replicas starting with PT staggered every 10-sec-
onds, one-way-synchronizing a random pair once per sec-
ond, they monotonically increase and eventually con-
verge on the one with the latest LT.

Convergent LT, with variable-rate PT

With each replica’s PT clock running at a different rate
relative to RT, one-way-synchronizing a random pair
once per second, all replicas keep converging close to the
one with the latest LT, i.e. the fastest clock.

 Distributed Logical Time

 6 of 7

Far-Future replica joins, then leaves

A replica with a far-future date joins; all replicas con-
verge on the new far-future LT by one-way-synchronizing
a random pair once per second. The “bad” replica then
leaves the collective. The remaining replicas have large
skews, which should not change. In particular, they
should not “creep up” in skew.

Problems

LT at start-up
When a replica first starts up, it will have an LT that is
likely to need skew-correction. It should “fix” its LT prior
to using it in a meaningful way.

One fix is to communicate with any other replica; this
will bring it up to speed and set an appropriate skew.

Another fix is to persist the LT state between runs of the
replica. In particular, saving the skew value. However,
this is not as good as communicating with a live replica,
because the behavior of PT or the collective value of the
skew might have changed since the previous run.

Using LT without doing those things is still legal and self-
consistent, but will generate events that will appear to be
older than they actually are, relative to other events be-
ing generated by other replicas around the same RT.

Anti-Objectives
The following are not goals. In some cases the algorithm
gives best-effort to achieve them anyway. In some cases
there are things the library user can do to opt-into having
that goal, possibly at the expense of another goal or
constraint.

Uniqueness

The algorithm above creates locally-unique values (i.e.
monotonically-increasing), but not globally-unique (i.e.
two replicas can generate the same LT).

Uniqueness can be useful because it allows LT to also
serve as a “name” of an event in logs or databases.

It’s easy to add uniqueness. Just add more (least-signifi-
cant) bits to the LT structure. Set them equal to some-
thing unique to a replica. This can be a replica ID that is
unique in the world, since the rest of the Time compo-
nents will never be generated again on that replica. Or it
can be a sufficiently large number of random bits.

It may seem like collisions are already unlikely, however
they are common under certain assumptions, namely if
PT is coarsely updated and d is very small. Consider the
example above, but rather than d=1 , assume a fast net-
work where d=0.001 but a PT source that updates only
once per second (on a timer, say). Once P and Q share LT,
they will be identical at the same point in RT, and stay
synchronized thanks to s . So they will likely collide if
both generate an LT inside the same RT second.

Keep PT close to RT

It’s nice if PT stays close to RT, but it is not a
requirement.

 Distributed Logical Time

 7 of 7

You can achieve this, in fact making the difference
bounded, if you disable skew. This keeps PT close to RT
but results in a potentially large e , and thus you get mis-
ordered events. If you accept this trade-off, you can en-
sure PT never strays too far from RT, as proved in the the
HLC paper referenced above.

To achieve this while not giving up the objectives on the
small size of e , you can use NTP or a similar service to
keep PT close to RT.

In the end, the algorithm is simple, and perhaps even ob-
vious in retrospect. The best things are. Simplicity is a
core requirement for scalability and truly bug-free code.
We hope these properties result in people using this
technique.

Printed from: A Smart Bear
https://longform.asmartbear.com/distributed-logical-time/
© 2007-2024 Jason Cohen @asmartbear

https://www.cse.buffalo.edu/tech-reports/2014-04.pdf?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://longform.asmartbear.com/distributed-logical-time/
https://twitter.com/intent/user?screen_name=asmartbear

